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Abstract  
 
The main goal is to estimate the HR value from the activity sensor 3D acceleration measurements of the cattle rumen 
bolus. During the development of the algorithm it was intended to execute the primary calculations on the device's 
microcontroller and the additional calculations could be performed on the server. The proposed HR estimation 
algorithm is based on simple data cleaning and peak detection, but the validation and postprocessing of the detection 
uses AI methods, namely MLP artificial neural network with different cell numbers. The accuracy of the period 
estimation (IBI) was ±50ms, which means an 8% error. This allows basic alerts to be implemented.  
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INTRODUCTION  
 
PLF is one of the leading technologies in 
agriculture (Knight, 2020b). One of the main 
directions of this is to collect relevant 
information from the animals (Szabo & Alexy, 
2022) and their environment with the 
appropriate sensors, process it with an 
information system (Cabrera & Fadul-Pacheco, 
2021; Caja et al., 2016; Dado & Allen, 1994; 
Daum et al., 2022; El Bilali et al., 2020; Khanal 
et al., 2010) and use the obtained results for the 
purpose of automation and/or decision support. 
These processes are of great economic 
importance, as they make animal husbandry 
more profitable, and at the same time solve the 
partial replacement of the missing human 
workforce and help to ensure the well-being of 
the animals (Alsaaod et al., 2012; Caja et al., 
2016; Knight, 2020a; Michie et al., n.d.). A 
rumen bolus sensor can be used as a sensor in 
such a system, and it is already used in dairy 
cattle. Rumen bolus sensors typically measure 
temperature, pH and/or activity, as this is 
usable technical solution for operating such 
sensors at the current technological level 
(Borchers et al., 2017; Cabrera & Fadul-
Pacheco, 2021; Caja et al., 2021; Campos et al., 
2018; Dado & Allen, 1994; Hajnal et al., 2022; 
Hamilton et al., 2019; Hanušovský et al., 2017; 
Ipema et al., 2008; Knauer et al., 2016; Knight, 
2020b; Mottram, 2010; Vakulya et al., 2022; 

Zhang et al., 2018). The current systems can 
also be used for alarms, but I thought it was 
possible to expand the range of measured 
characteristics with new ones. In this article, it 
was examined whether there is a realistic 
possibility to determine the heart function 
parameters (Heart Rate –HR, Interbeat Interval 
–IBI) with the help of the rumen bolus. This 
intention is meaningful, because the heart 
function in cows (Caja et al., 2021; Kovács et 
al., 2014), just like in humans (Piros et al., 
2023), is an important characteristic that gives 
information about the state of health, indicates 
the level of stress and certain events, such as 
the start of calving. As a result, this information 
can be extremely valuable in PLF systems. In 
the case of cows, no such tests have yet been 
carried out, but in the case of humans, there is a 
lot of literature with results available, as a 
common target function of modern wearable 
technology is the examination of heart function 
(Bruser et al., 2013; Curone et al., 2010; Galli 
et al., 2018; Hernandez et al., 2015; Kwon et 
al., 2011; Lahdenoja et al., 2016; Nakano et al., 
2012; Zhao et al., 2021). The publications show 
that it is very difficult to accomplish the task 
precisely and efficiently. For human use, the 
heart rate is typically determined from optical 
data from pulse oximeters, and in case of 
activity measurement, the devices work with a 
high sampling frequency and often with an 
additional sensor. Many publications deal with 
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the methodology of data processing, which 
often uses signal processing methods with high 
computational demands due to the significant 
noise in the measurement(Alzahal et al., 2009; 
Galli et al., 2018; Nakano et al., 2012). 
The aim of this research is to develop an 
algorithm with low computational requirements 
that can be run on the rumen bolus 
microcontroller and is able to estimate cardiac 
IBI values. Since a real device to be developed 
does not necessarily have a way to 
continuously measure and process data, it was 
necessary to determine how large a series of 
measured data could be processed with the 
highest accuracy. The aim is therefore to 
establish the optimal period durations on the 
basis of shorter measured data series of a few 
seconds. According to previous experience, the 
algorithms can be made sufficiently accurate 
with the help of some post-processing step. In 
this paper, an artificial neural network was used 
for post-processing. The research question is, 
with which parameters a simple algorithm 
gives the best estimation, as well as whether it 
is possible to post-process the data with the 
help of the neural network and whether it is 
possible to achieve a usable result with the 
relatively low sampling frequency and 
processing steps with little computational 
demand. 
 
MATERIALS AND METHODS 
 
In this paper, 3D acceleration data measured by 
the rumen bolus sensor were used. The 
experimental set-up and the method of data 
processing are described in details in the 
previous publications (Vakulya et al., 2022). 
The accelerometer was used to measure 3D 
acceleration data with a sampling frequency of 
25Hz. The data was sent via radio 
communication to the receiver, which recorded 
the measurements supplemented them with a 
time stamp. Parallel ECG monitoring 
measurements were carried out (Hajnal et al., 
2022; Kovács et al., 2014). We had no way of 
synchronizing the timer of the two devices, but 
at the same time we confirmed with another 
experiment that the difference was within 2s, so 
the ECG values can be considered as actual 
control values.  

 
 
The algorithm was developed using R scripts 
within the RStudio 2022.07.1+554 environment 
and Orange Datamining 3.35 software (Orange 
DataMining, n.d.). 
The Figure 1. shows the raw data. It can be 
seen that the periods belonging to the heart can 
be clearly discerned in some parts of the curve, 
for example in the last 3s, but they are almost 
barely perceptible in certain parts of the curve 
(at 35s). It can be seen that the movement 
activity of the animal is strongly superimposed 
on the curve, and elsewhere the curve becomes 
detached, often resulting in completely false 
period length detection. The basic idea behind 
detection is a method based on standard pre-
processing, peak detection and post-processing 
steps (Zhao et al., 2021). The details of the 
algorithm and the method of data processing 
can be seen in Figure 2. During the data 
processing, in the first step, it was a trial to 
reduce motion artefacts (MAs) originates from 
the animal's body movement using a 
thresholding procedure of the acceleration data. 
Values that differed from the average by more 
than the threshold were cut to the threshold 
level. The thresholds were established on the 
basis of the distribution statistics of the 
acceleration derivative. This was followed by a 
low-pass filter to remove the high-frequency 
signal components, it was resolved by a 
moving mean computation with a window of a 
given width. For the peak detection the two 
highest acceleration axes were used, because 
technically the cow's heart is located almost 
vertically upwards to the rumen, so the 

 
Figure 1. Raw accelerometer data of 20s long data 
acquisition period (green) and the control Interbeat 

Interval (IBI) values (dots) 
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accelerations resulting from the heart's action 
are mostly indicated on the vertical axis. The 
principle of peak detection was to locate the 
zero points of the derivative. The peak 
detection was performed on the basis of the 
minimums and maximums of the function for 
each data series of a few seconds in length, so 
final two data series were resulting in a series 
of IBI values detected based on the minima and 
maxima. 
 

 
Unfortunately, higher frequency harmonics and 
period lengths multiplied due to detection 
errors can also be included in this series. It has 
been described in the literature that MAs can 
also generate false period lengths. In this way, 
the minimum, maximum, average and median 
values from each data series were determined, 
so total of 16 data for the two channels were 
calculated which in an ideal data series are all 
the equal and according to the 25Hz sampling 
frequency the 1/40 part of the IBI values. This 
data set was used for post-processing. This 
system was investigated for the ideal data series 
length in which the detection based on 3-4-5 s 
long data series. The accuracy after detection 
and the accuracy after postprocessing of trained 
neural network were determined. An important 
pre-requisite for neural networking is that the 
dataset must be balanced. Figure 3 shows the 
histogram of the control ECG data set, and it is 
concluded that the prerequisite is not met. 

 
The training dataset of the neural network was 
balanced using the random walk oversampling 
(RWO) method (H. Zhang & Li, 2014). The 
neural network used is an MLP with three 
hidden layers with 10,5,10 neurons, RELU 
activation function and ADAM solver. The data 
was share to teaching (70%) and testing (30%) 
datasets. The neural network training was 
performed as a classification and evaluated in 
the usual way (ACC, MAE, ROC, F1, 
Confusion matrix). The presented metrics were 
get in all cases on testing data. 
 
RESULTS AND DISCUSSIONS 
 
Figure 4 shows a sample dataset after 
preprocessing and peak detection. We can see 
that in certain cases it was possible to find the 
real peak very accurately. Since the curves 
have small subpeaks (shoulders), we set the 
peak detection so that it does not detect two 
peaks close to each other, but because of this, 
the algorithm often does not find the most 
prominent peak, but instead produces the 
shoulder as a result. It can be concluded that 
the peaks are detected, but the accuracy with 
the specified parameters should be further 
improved in the future, or perhaps 
supplemented with an algorithm that helps to 
separate the main and secondary peaks. If the 
algorithm detects several secondary peaks, then 
the correct value can be obtained from the 
average of two or three sections, so the average 
of the peak distances can provide an 

 
Figure 2. Data processing workload 

Step1
•Data preprocessing with 

thresholding 

Step2
•Moving average
•2x

Step3
•Differentiation
•2x

Step 4

•Peak detection
•By minimum sites and maximum 

sites

Step5
•Sending to the server
•Postprocessing with ANN (10,5,10)

 
Figure 3. Histogram of control ECG Interbeat 

Intervals (IBI) 
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approximately good solution in this case. If 
several peaks are included in the analysis, the 
false peaks cause the shortening of the period 
length on one side and the increase of the 
period length on the other side. If there is a 
correctly identified period in the data set, it will 
be located near to the median of the series. As 
more ideal the data series, as more 
homogeneous the resulting IBI series, ideally 
all members are equal, and contrary, if there are 
large differences in the detection, it can 
definitely indicate a detection error. In such 
cases, it is possible to discard the data series as 
a bad detection, or to try to decide what the real 
value is in the post-processing (with the MLP 
artificial neural network in this paper). The 
distribution of errors after the first detection is 
shown in Figure 7 B. It can be seen that the 
error function has a roughly normal 
distribution, because many parameters cause 
the error, but the function has shifted a little to 
the left, so typically the IBI values are 
underestimated by the algorithm. The average 
error is unacceptably large, and in this form it 
cannot be used even for a rough estimation. 

 
The primarily obtained values were processed 
with a neural network. The primary detection 
can be implemented on the microcontroller of 
the bolus sensor and the result of the 
measurement is a data set of a size that can 
already be sent using a radio data transmission 
standard protocol. Post-processing using an 
intelligent method can already be implemented 
on the server side. During the implementation, 
we consciously tried to use a relatively small 
neural network in order to avoid overtraining as 

much as possible, taking the risk that the 
obtained results would be weaker. I solved the 
neural network data processing as a 
classification task, because in this way the 
processing of individual IBI period categories 
can be evaluated in more detail. Table 1 
contains the evaluation of the post-processing 
of data sets of size 3s, 4s, 5s. It can be seen that 
the Classification Accuracy (CA) value is 
relatively small. The best case is the processing 
of a 4s long data series, but even here the 
detection rate accuracy is only 61.5%. The 
same is true for other metrics like F1, 
Precision, Recall, MCC. At the same time, the 
AUC (Area Under Curve) value, which 
assesses the validity of the detection, the size of 
the area under the ROC curve, produced 
significantly better results. The best case here 
also occurred in case of processing the 4s long 
data series, with a value of 0.874, which is 
quite close to the ideal value of 1. The 
explanation for the two types of results is that, 
although in many cases it is not possible to 
accurately categorize the data, at the same time, 
in most cases, the result is not fundamentally 
bad at the end of the processing, only one 
category mistake, which is approximately 
corresponds to an error of 40ms. The actual IBI 
values fall between 600ms and 1200ms, that is, 
the difference of the detection means an error 
of 5-10%. 

 
A detailed evaluation of the ANN post-
processing can be done with the help of Figures 
5 and 6. Figure 5 shows the confusion matrix 
for the processing of 3s, 4s, 5s long data series. 
Naturally, here too, the processing of the 4s 
long data series is the most effective in terms of 
almost all values. In the main diagonal, the 
proportion of correctly categorized data is 
better in all values compared to the other two 

 
Figure 4. Result of the data processing algorithm. 

The red curve is the preprocessed acceleration data 
supplemented with the detected maximum and 

minimum peaks 

 
Table 1. Quality metrics of the ANN processing of 

3s, 4s, 5s long data series primary results 

Mode
l 

AUC CA F1 Prec Reca
ll 

MCC 

NN3s 0.845 0.552 0.545 0.567 0.552 0.456 

NN4s 0.874 0.615 0.616 0.635 0.615 0.532 

NN5s 0.859 0.603 0.598 0.612 0.603 0.518 
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data sets. The ratio of the worst categorized 
data can be seen in the bottom left and upper 
right corners, in this respect the processed data 
series of 5s is the best, it contains the fewest 
gross errors. It can be seen that the largest 
numerical values are found in the main 
diagonal and in the band immediately next to it, 
which means that the majority of the data can 
be classified with no more than 1 category 
error. Detection of extreme categories is better 
than the average. The detection of category 15 
(600ms IBI) is 93.7-97.4% accurate.  
 

 
This category is particularly important for 
implementing alarms related to elevated heart 
rate. It should be mentioned that this category 
can only be mistaken in one direction in the 
system. Figure 6 shows the ROC curve 
belonging to class 15 (600ms IBI). It can be 
seen that the shape of the curve is almost ideal 
and enables a good categorization of the class. 
Unfortunately, we cannot ignore the fact that 
this category was rather underrepresented in the 
learning dataset, and the required amount of 
learning data is the result of oversampling. In 

such cases, relying on statistical considerations, 
we can hope that the processing gave a real 
result, but this can only be confirmed with 
further measurements. 
 

 
Figure 7 shows the histogram of error values 
after primary data processing (A) and after 
neural network post-processing. It can be seen 
that the detection accuracy has improved by 
almost an order of magnitude. 
 

 

 

 

 
Figure 5. Confusion matrix of (A) 3s, (B) 4s, (C), 5s 

long data series. Each category is 40ms wide 

 
Figure 6 ROC curve for class 15 which corresponds 

the 600ms IBI 

 

 
Figure 7. Histogram of IBI detection errors: (A) 

errors of the 4s long detection period by the median 
of detected maxima, (B) errors of the ANN result 

A 

B 

C 

A 

B 
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Table 2. Detected IBI categories and the corresponding 

HR values 

Cat IBI (ms) HR (BPM) 

1 800 75 

2 760 79 

3 720 83 

4 680 88 

5 640 93 

6 600 100 

7 560 107 

8 520 115 

9 480 125 

 
Table 2 shows the detectable IBI and HR 
values. Among them, it was possible to detect 
categories 1-6 in the current experiment.  
The average error value is 20-40 ms, which is 
not suitable for very accurate animal health 
measurements, but it is already suitable for the 
implementation of important health warnings or 
alarms related to significant HR changes 
(disease, increased stress, initiation of calving) 
in PLF-related animal husbandry support 
applications. 
 
CONCLUSIONS  
 
In this paper, an algorithm development 
process was presented, of which the IBI and the 
HR values can be calculated from the measured 
3D accelerometer data in a cow rumen bolus 
sensor. The algorithm to be implemented must 
be of low computational intensity that it can 
also be implemented on the sensor’s 
microcontroller. In such a case, the first 
question is the quantity of data to be collected, 
for the optimum calculation can be carried out. 
Experiments have revealed that the collection 
of 4-5 seconds of data is optimal for 
calculations. It could be seen from the results 
that 4s are ideal according to most metrics, and 
5s is the best in terms of gross error rate, but 
processing a longer sequence with such a 
simple algorithm no longer improves the result. 
The 4s-5s data series can mean 100 or 125 
measured data, considering the 25 Hz sampling 
frequency. The measurement error is 40ms in 
this case, which theoretically can be improved 
to a 10 ms detection accuracy assuming 3-4 
cycles of detection, but unfortunately, due to 

the significant noise of the measurement, such 
good results cannot be obtained on real data. 
Measurements were evaluated with a simple O 
(N) data cleaning and peak detection algorithm. 
The error of the results obtained is of a mag-
nitude greater than the theoretical minimum. 
Based on the results, it can be concluded that it 
would be worthwhile to use a slightly more 
skillful data cleaning and peak detection 
algorithm in the future, but it also appears that 
due to the high noise ratio of the measurement, 
this alone is not sufficient. It is absolutely 
necessary to subject the measurement to some 
kind of post-processing. In this work, a neural 
network was examined as a post-processing 
method and it was found that the neural net-
work is a suitable solution for post-processing. 
A relatively small sized neural network was 
consciously chosen to avoid the risk of over 
teaching. Postprocessing with a neural network 
significantly improved detection accuracy and 
enabled detection with a ±40ms error. The 
resulting method is thus appropriate for 
classifying cardiac function into six categories. 
The accuracy of the obtained results can be 
improved in the future and the current accuracy 
is not yet suitable for veterinary purposes. On 
the other hand, the system is suitable for use in 
information systems related to PLF, it is 
probably suitable auxiliary data for detection of 
stress on animals, for alarms related to calving 
and diseases. 
The HR values above 100 could not be 
measured by the control ECG measurement, so 
there is currently no information on the 
detectability of these values. 
The next step of the research is to conduct addi-
tional measurements and gather the corres-
ponding control data. After that, the refinement 
of the data cleaning and peak detection 
algorithm and the examination of the neural 
network solution in the detection of values that 
are underrepresented or not measured at all in 
the current experiment. 
 
ACKNOWLEDGEMENTS  
 
Thanks for Albacomp Zrt for creation of the 
bolus and for Levente Kovács (MATE) for help 
in control measurements. Lot of thanks for 
Etyek Farm to support us as an experimental 
place. 



306

 
REFERENCES 
 
Alsaaod, M., Römer, C., Kleinmanns, J., Hendriksen, K., 

Rose-Meierhöfer, S., Plümer, L., & Büscher, W. 
(2012). Electronic detection of lameness in dairy 
cows through measuring pedometric activity and 
lying behavior. Applied Animal Behaviour Science, 
142(3–4), 134–141.  

Alzahal, O., Steele, M. A., Valdes, E. V, & Mcbride, B. 
W. (2009). Technical note : The use of a telemetric 
system to continuously monitor ruminal temperature 
and to predict ruminal pH in cattle. 5697–5701. 
https://doi.org/10.3168/jds.2009-2220 

Borchers, M. R., Chang, Y. M., Proudfoot, K. L., 
Wadsworth, B. A., Stone, A. E., & Bewley, J. M. 
(2017). Machine-learning-based calving prediction 
from activity , lying , and ruminating behaviors in 
dairy cattle. Journal of Dairy Science, 100(7), 5664–
5674.  

Bruser, C., Winter, S., & Leonhardt, S. (2013). How 
speech processing can help with beat-to-beat heart 
rate estimation in ballistocardiograms. MeMeA 2013 - 
IEEE International Symposium on Medical 
Measurements and Applications, Proceedings, 12–
16. https://doi.org/10.1109/MeMeA.2013.6549696 

Cabrera, V. E., & Fadul-Pacheco, L. (2021). Future of 
dairy farming from the Dairy Brain perspective: Data 
integration, analytics, and applications. International 
Dairy Journal, 121, 105069. 
https://doi.org/10.1016/j.idairyj.2021.105069 

Caja, G., Castro-Costa, A., & Knight, C. H. (2016). 
Engineering to support wellbeing of dairy animals. 
Journal of Dairy Research, 83(2), 136–147. 

Caja, G., Castro-Costa, A., & Knight, C. H. (2021). 
Engineering to support wellbeing of dairy animals 
Background and current scenario. 
https://doi.org/10.1017/S0022029916000261 

Campos, D. P., Abatti, P. J., Bertotti, F. L., Hill, J. A. G., 
& da Silveira, A. L. F. (2018). Surface 
electromyography segmentation and feature 
extraction for ingestive behavior recognition in 
ruminants. Computers and Electronics in Agriculture, 
153, 325–333.  

Curone, D., Tognetti, A., Secco, E. L., Anania, G., 
Carbonaro, N., De Rossi, D., & Magenes, G. (2010). 
Heart rate and accelerometer data fusion for activity 
assessment of rescuers during emergency 
interventions. IEEE Transactions on Information 
Technology in Biomedicine, 14(3), 702–710.  

Dado, R. G., & Allen, M. S. (1994). Variation in and 
Relationships Among Feeding, Chewing, and 
Drinking Variables for Lactating Dairy Cows. 
Journal of Dairy Science, 77(1), 132–144.  

Daum, T., Ravichandran, T., Kariuki, J., Chagunda, M., 
& Birner, R. (2022). Connected cows and cyber 
chickens? Stocktaking and case studies of digital 
livestock tools in Kenya and India. Agricultural 
Systems, 196, 103353. 
https://doi.org/https://doi.org/10.1016/j.agsy.2021.10
3353 

El Bilali, H., Bottalico, F., Ottomano Palmisano, G., & 
Capone, R. (2020). Information and communication 

technologies for smart and sustainable agriculture. 
IFMBE Proceedings, 78. https://doi.org/10.1007/978-
3-030-40049-1_41 

Galli, A., Narduzzi, C., & Giorgi, G. (2018). Measuring 
Heart Rate during Physical Exercise by Subspace 
Decomposition and Kalman Smoothing. IEEE 
Transactions on Instrumentation and Measurement, 
67(5), 1102–1110.  

Hajnal, É., Kovács, L., & Vakulya, G. (2022). Dairy 
Cattle Rumen Bolus Developments with Special 
Regard to the Applicable Artificial Intelligence (AI) 
Methods. Sensors, 22(18), 6812. 

Hamilton, A. W., Davison, C., Tachtatzis, C., 
Andonovic, I., Michie, C., Ferguson, H. J., 
Somerville, L., & Jonsson, N. N. (2019). 
Identification of the Rumination in Cattle Using 
Support Vector Machines with Motion-Sensitive 
Bolus Sensors. Sensors, 19(1165), 1–14.  

Hanušovský, O., Bíro, D., Šimko, M., Gálik, B., Juráček, 
M., Rolinec, M., & Herkeľ, R. (2017). Drinking 
regime evaluation with continuous ruminal 
monitoring boluses. Acta Fytotechnica et 
Zootechnica, 20(1), 1–5. 

Hernandez, J., McDuff, D., & Picard, R. W. (2015). 
Biowatch: Estimation of heart and breathing rates 
from wrist motions. Proceedings of the 2015 9th 
International Conference on Pervasive Computing 
Technologies for Healthcare, PervasiveHealth 2015, 
169–176.  

Ipema, A. H., Goense, D., Hogewerf, P. H., Houwers, H. 
W. J., & van Roest, H. (2008). Pilot study to monitor 
body temperature of dairy cows with a rumen bolus. 
Computers and Electronics in Agriculture, 64(1), 49–
52.  

Khanal, A. R., Gillespie, J., & MacDonald, J. (2010). 
Adoption of technology, management practices, and 
production systems in US milk production. Journal 
of Dairy Science, 93(12), 6012–6022.  

Knauer, W. A., Godden, S. M., & McDonald, N. (2016). 
Preliminary evaluation of an automated indwelling 
rumen temperature bolus measurement system to 
detect pyrexia in preweaned dairy calves. Journal of 
Dairy Science, 99(12), 9925–9930. 

Knight, C. H. (2020a). Review: Sensor techniques in 
ruminants: more than fitness trackers. Animal, 14, 
s187–s195.  

Knight, C. H. (2020b). Review: Sensor techniques in 
ruminants: More than fitness trackers. Animal, 
14(S1), S187–S195.  

Kovács, L., Jurkovich, V., Bakony, M., Szenci, O., Póti, 
P., & Tőzsér, J. (2014). Welfare implication of 
measuring heart rate and heart rate variability in dairy 
cattle: Literature review and conclusions for future 
research. Animal, 8(2), 316–330.  

Kwon, S., Lee, J., Chung, G. S., & Park, K. S. (2011). 
Validation of heart rate extraction through an iPhone 
accelerometer. Proceedings of the Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS, 5260–5263.  

Lahdenoja, O., Humanen, T., Tadi, M. J., Pankaala, M., 
& Koivisto, T. (2016). Heart rate variability 
estimation with joint accelerometer and gyroscope 
sensing. Computing in Cardiology, 43, 717–720.  



307

 
Michie, C., Andonovic, I., Davison, C., Hamilton, A., 

Tachtatzis, C., Jonsson, N., Duthie, C.-A., Bowen, J., 
& Gilroy, M. (n.d.). The Internet of Things enhancing 
animal welfare and farm operational efficiency. 
Journal of Dairy Research, 87(S1), 20–27.  

Mottram, T. T. (2010). Is A Lifetime Rumen Monitoring 
Bolus Possible ? 
http://precisiondairy.com/proceedings/s11mottram.pd
f 

Nakano, M., Konishi, T., Izumi, S., Kawaguchi, H., & 
Yoshimoto, M. (2012). Instantaneous heart rate 
detection using short-time autocorrelation for 
wearable healthcare systems. Proceedings of the 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, EMBS, 
6703–6706. 
https://doi.org/10.1109/EMBC.2012.6347532 

Orange DataMining. (n.d.). Retrieved May 10, 2023, 
from 
https://orangedatamining.com/download/#windows 

Piros, P., Fleiner, R., Jánosi, A., & Kovács, L. (2023). 
Further Evolution of Mortality Prediction with 
Ensemble-based Models on Hungarian Myocar-dial 

Infarction Registry. Acta Polytechnica Hungarica, 
20(4). 

Szabo, S., & Alexy, M. (2022). Practical Aspects of 
Weight Measurement Using Image Processing 
Methods in Waterfowl Production. Agriculture, 12, 
1869. https://doi.org/10.3390/agriculture12111869 

Vakulya, G., Hajnal, É., & Udvardy, P. (2022). 
Experimental Bolus Sensor for Dairy Cattle. 2022 
IEEE 20th Jubilee International Symposium on 
Intelligent Systems and Informatics (SISY), 157–162. 

Zhang, H., & Li, M. (2014). RWO-Sampling: A random 
walk over-sampling approach to imbalanced data 
classification. Information Fusion, 20, 99–116. 

Zhang, L., Lu, J., Nogami, H., Okada, H., Itoh, T., & 
Arai, S. (2018). Solid-state pH sensor prototype for 
real-time monitoring of the rumen pH value of 
Japanese cows. Microsystem Technologies, 24(1), 
457–463.  

Zhao, C., Zeng, W., Hu, D., & Liu, H. (2021). Robust 
Heart Rate Monitoring by a Single Wrist-Worn 
Accelerometer Based on Signal Decomposition. 
IEEE Sensors Journal, 21(14), 15962–15971.  

 
 

 


