
158

OPTIMIZING ENVIRONMENTAL INTELLIGENCE IN AN INTERNET OF

THINGS SYSTEM FOR SUSTAINABLE HEALTH MONITORING

Ana-Maria COMEAGĂ, Iuliana MARIN

National University of Science and Technology POLITEHNICA Bucharest,

313 Splaiul Independenţei, District 6, 060042, Bucharest, Romania

Corresponding author email: marin.iulliana25@gmail.com

Abstract

The transformative influence of the Internet and the expansive growth of the Internet of Things (IoT) have become
integral components of contemporary life. This paper delves into the intersection of IoT systems and environmental
health, emphasizing the challenges posed by memory constraints in low-end IoT devices. As these devices play a role in
monitoring and managing environmental parameters, the effective utilization of resources through robust memory
management becomes paramount. With focus on design, configuration, scalability, and performance in scene
management, this study explores the critical role of memory management in ensuring optimal functionality of IoT
systems. In the context of environmental health, the paper sheds light on the intricate dynamics of memory allocation,
scene execution, memory reduction, and system scalability. The study highlights the role of efficient memory
management in facilitating seamless and adaptive IoT experiences in environmental monitoring applications. In
conclusion, the paper underscores the need for memory management strategies as the IoT ecosystem continues to
evolve. This comprehensive exploration contributes to the integral role that effective memory management plays in
advancing both IoT technologies and environmental health initiatives.

Key words: environmental health, Internet of Things, IoT applications, memory management, operating systems,
resource optimization.

INTRODUCTION

In an era dominated by interconnected
technologies, the fusion of the Internet and the
Internet of Things (IoT) has emerged as a
driving force shaping our daily lives. From
smart homes to industrial applications, the
widespread adoption of IoT systems has
fundamentally altered our perception and
interaction with the world. At the core of this
technological revolution lies a critical juncture,
the convergence of IoT systems and
environmental health (Elgazzar et al., 2022).
The ever-expanding landscape of the Internet
of Things (IoT) has appeared in a new era of
interconnected devices, revolutionizing the way
we interact with our surroundings. At the heart
of this digital transformation lies the critical
nexus of memory management, operating
systems, and environmental health, a
convergence that is pivotal for the seamless
operation of IoT applications (Akhigbe et al.,
2021). Memory management becomes
paramount in low-end IoT devices tasked with
monitoring and managing environmental

parameters. Operating systems play an
important role in orchestrating data exchange,
while the growing concern for environmental
health amplifies the significance of robust IoT
applications (Abid et al., 2022).
This paper tests a created IoT system, with a
specific emphasis on the challenges posed by
memory constraints in low-end IoT devices. As
the backbone of IoT functionality, memory
management ensures the smooth operation of
devices, particularly in the context of
environmental monitoring and management.
The study underscores the pivotal role that IoT
devices play in monitoring and managing
environmental parameters. From air quality
sensors to presence detectors, these devices are
tasked with collecting, processing, and
transmitting data that forms the foundation of
environmental health initiatives. However, the
omnipresent challenge of memory constraints
in low-end IoT devices necessitates an
understanding of memory management
strategies to optimize their performance.
With a focus on design, configuration,
scalability, and performance in scene

Scientific Papers. Series D. Animal Science. Vol. LXVII, No. 1, 2024
ISSN 2285-5750; ISSN CD-ROM 2285-5769; ISSN Online 2393-2260; ISSN-L 2285-5750

159

management, this study delves into the role of
memory management in ensuring the optimal
functionality of IoT systems. The exploration
extends to the multifaceted memory allocation,
scene execution, memory reduction, and system
scalability, providing insights into the
management of resources within the proposed
IoT ecosystem.
In the context of environmental health, this
paper sheds light on the relationship between
efficient memory management and the
facilitation of seamless and adaptive IoT
experiences. As environmental monitoring
applications continue to evolve, the study
emphasizes the need for tailored memory
management strategies to navigate the changing
landscape of IoT technologies. In the next
section are presented the materials and methods
used for a complete analysis of the proposed
IoT system, followed by the outlines of results
and discussion. The last section describes the
conclusions and the future work.

MATERIALS AND METHODS

In addition to memory management, the study
considered the influence of communication
protocols on the performance of IoT systems.
Various protocols, such as MQTT, CoAP, and
HTTP, were evaluated for their impact on data
transmission efficiency, latency, and
adaptability to resource-constrained
environments (Silva et al., 2021). The choice of
an appropriate communication protocol is
integral to the seamless operation of IoT
devices, especially in applications related to
environmental health where timely and reliable
data transmission is important.
The lightweight and efficient publish/subscribe
mechanism of MQTT proved crucial for
minimizing the overhead associated with data
exchange (Amanlou et al., 2021). Memory
management strategies were intricately
examined to ensure that MQTT, as a protocol,
could operate seamlessly in resource-
constrained environments. Emphasis was
placed on streamlining message processing and
minimizing memory footprint to enhance the
protocol's adaptability, particularly in scenarios
demanding low-latency communication, such
as real-time environmental parameter
monitoring (Donta et al., 2022).

CoAP emerged as a focal point in the
evaluation of protocols due to its designed
suitability for constrained devices and low-
power networks (Alhaidari & Alqahtani, 2020).
Memory management practices were refined to
align with the specific demands of CoAP,
emphasizing the need for representations of
data structures (Mniszewski et al., 2021). The
objective was to ensure that CoAP could
operate optimally within environments where
memory constraints are pronounced,
maintaining responsiveness without
compromising on the integrity of transmitted
data (Bansal & Kumar, 2020).
As a foundational protocol for web
communication, HTTP was examined through
a lens that considered its implications within
the IoT ecosystem. Memory management
strategies were tailored to address the
potentially high memory overhead associated
with HTTP, ensuring that IoT devices utilizing
this protocol could operate effectively without
compromising on responsiveness (Abu Bakar
& Kijsirikul, 2023). This scrutiny was relevant
in applications where existing HTTP
infrastructure was leveraged for IoT
connectivity (Concha Salor & Monzon Baeza,
2023; Chen et al., 2023).
A consideration in the evaluation of these
protocols was their impact on data transmission
efficiency. Memory management practices
were fine-tuned to facilitate streamlined data
exchange, reducing overhead and optimizing
the use of available resources (Saqib et al.,
2023; Ajani et al., 2021).
Latency, a critical factor in real-time IoT
applications, was examined for these protocols
(Kondoro et al., 2021). Memory management
strategies were tailored to mitigate latency
challenges, ensuring that data transmission
occurred with minimal delays (Ma et al., 2019).
Recognizing the diversity of IoT deployments,
a study placed emphasis on the adaptability of
these protocols to resource-constrained
environments (Tsigkanos et al., 2019; Imteaj et
al., 2021).
Memory management frameworks were
designed to adapt to constraints imposed by
low-end IoT devices (Samaila et al., 2020;
Heidari & Jabraeli Jamali, 2022), striking a
balance between protocol efficiency and
memory optimization.

160

The current paper outlines the approach used to
design and set up an IoT system. The software
is built using Python as the backend and Home
Assistant Community Store (HACS) for the
graphical user interface (GUI). It acts as a user
interface, streamlining the creation of
personalized monitoring and assistance
solutions. Home Assistant, a powerful and
open-source home automation platform, serves
as the orchestrator for the seamless integration
of IoT protocols such as MQTT, CoAP, and
HTTP (Fortino et al., 2022). This strategic
amalgamation enhances the functionality and
user experience of the IoT system, providing a
centralized hub for smart home control and
automation.
Home Assistant's compatibility with MQTT, a
lightweight and efficient messaging protocol,
brings advantages to the IoT ecosystem. MQTT
seamlessly integrates into Home Assistant,
enabling real-time communication between
devices. This integration is instrumental in
creating a responsive and interconnected IoT
network, where sensors and actuators
communicate. The publish/subscribe
mechanism of MQTT aligns with Home
Assistant's event-driven architecture, allowing
for instant updates and actions based on
changes in the IoT environment.
The integration of Constrained Application
Protocol (CoAP) further extends the versatility
of Home Assistant. CoAP, designed for
constrained devices and low-power networks,
aligns with Home Assistant's commitment to
resource-efficient operation. This integration
facilitates efficient communication between
devices with reduced overhead, making it ideal
for scenarios where memory constraints and
energy efficiency are paramount. CoAP's
ability to handle constrained environments
finds a natural home within the Home Assistant
ecosystem, enhancing the adaptability of the
IoT system.
Home Assistant's integration with HTTP adds a
layer of accessibility and compatibility to the
IoT system. While HTTP is a standard protocol
for web communication, its integration within
Home Assistant ensures seamless interaction
with a wide range of web-based services and
applications. This inclusion allows users to
leverage existing web infrastructure, providing
a familiar and accessible means of

communication. Whether interacting with
external APIs, cloud services, or web-based
applications, Home Assistant's HTTP
integration facilitates a comprehensive and
interconnected IoT experience.
For a new location, a name must be added, then
you must choose the exact position on the
interactive map or to introduce the values for
latitude and longitude, as shown in Figure 1. If
the interactive map is used, the values are
introduced automatically by the program.
These zones can be used for automations, so
that it is known if the monitored person has left
his home and moved to a new zone that exists
in the system.

Figure 1. Adding a New Location (own source)

After authentication, the user will have access
to the main interface of the system, such as the
one presented in Figure 2. With this, the user
can verify the status of multiple IoT devices,
such as indoor lightning illumination, along
with the presence of movement, CO, smoke,
humidity, and door opening.

Figure 2. Main User Interface after Login (own source)

The colour and the intensity of the light sensors
can be changed by the user from the graphical
interface, and after this action is performed it
can be observed that the specific sensor’s logo
already has the chosen colour. This procedure

161

is shown in Figure 3 and is applied to observe
the changes in production when the sensors
intensity is modified.

Figure 3. Changes made to the Left Bulb (own source)

The integrations made to operate the tested
system involved the use of deConz software for
Zigbee gateways, HACS, Meteorologisk
Institutt web service to retrieve weather data,
Mobile App to access the application on the
mobile phone, Raspberry Pi Power Supply
Checker to allow checking the power source of
the Raspberry Pi which sends the data from the
test board to the IoT system and the Z-Ware
protocol.
deConz is a system that communicates with the
ConBee and RaspBee Zigbee gateways and
exposes Zigbee devices. HACS simplifies the
discovery, installation, update, and removal of
monitoring devices from the IoT system,
customized for overseeing person activities.
The Z-Wave protocol is a technology of the
wireless communication, based on radio
frequency, specially designed for controlling,
monitoring, and reading the states of smart
devices.
Integrations are managed from the dashboard,
by choosing the option called Configuration, as
in Figure 4. From here, the options of each
entity can be modified to reach the expectations
of the user.

Figure 4. User Configurations for the IoT System

(own source)

After entering the Devices option, the installed
devices are shown to the user, like in Figure 5.
In the displayed table, the installed devices can
be seen, with their producer, model, assigned
area, integration, and battery charge value.

Figure 5. List of Managed Devices (own source)

In the tab named Entities appear devices that
are characterized by the associated name for the
action, the entity identifier, containing the
name of the automation and the action, as
presented in Figure 6.

Figure 6. System Entities (own source)

Entities are individual parts of a device, such as
temperature sensor, light bulb, and motion
sensor. A specific device can have more
entities. For example, a light bulb that monitors
the indoor temperature has as device exactly
the light bulb which contains the circuits and

162

the light, and the entities are a temperature
sensor and a light bulb.
Another type of example can be a button
pressed in case of an alert, where the device is
the button and the entities are the button’s
information, how many times it was pressed,
namely once, to show the data for the last hour,
twice, for obtaining the summary of data in the
last 12 hours.
To organize better the devices, as the project
grows, zones can be added for a further sorting
by on them, as presented in Figure 7. In this
way, the environmental factors can be observed
considering the specific factors of each area,
like the temperature, humidity, or CO, and see
how individuals react to the specific conditions.

Figure 7. System Zones (own source)

The interface of the mobile application for the
IoT system that allows the administration of the
devices on the panel is shown in Figure 8.

Figure 8. Mobile Application for the Management of

Devices placed on the Panel (own source)

With this mobile application, the user can
monitor the entire activity within a monitored
zone, while being everywhere and at any time.
The mobile interface is very useful, especially
for elder users who live alone.

To be located within the home, the user can
create a map using an editing application, such
as Magicplan (Figure 9).

Figure 9. 2D House Plan Creation using Magicplan (own

source)

The status of an entity belonging to a device
can be seen by selecting the Developer Tools
button from the interface, followed by the
Status tab. Depending on the entity, the state
can be a Boolean value (for a button, motion
sensor) or a numerical one, as in the case of the
temperature sensor (Figure 10). Depending on
the entity, various attributes of it appear on the
GUI. The status of an entity can be changed
using the Set Status button.

Figure 10. Entity Status (own source)

The next tab called Services is dedicated to the
functionality part of the program to be able to
manage the platform, in the case of reloading a
web page, or physically, to turn on the light, as
shown in Figure 11. A service can be called on
this page to see if it works. The services are
called automatically, using a button placed on
the graphical interface or which can be found
physically in the user’s house. A service may
accept parameters such as light intensity or
colour.

163

Figure 11. Platform Services (own source)

The tab called Templates is used for adding
personalized panels into the graphical interface
of the user, like in Figure 12. For example, the
user can add a panel in which CO, humidity,
person movement, and average temperature are
shown. The web template engine used for
implementing them is Jinja2.

Figure 12. Platform Templates (own source)

Events can be automatically called from the
platform to test their behaviour by pressing the
Trigger Event button, as shown in Figure 13.
You can press a button and then observe what
happens with all the analysed factors and this
brings some improvements to the entire smart
system for managing the environmental health.

Figure 13. Event Triggers (own source)

An automation can be activated manually from
the Automations menu by pressing the Trigger
button. Triggering an automation in this way
does not consider the conditions or the reason
for the trigger. This action is only performed to

verify that the automation result is what a user
wanted, and then to test the conditions and
triggers without pressing the Trigger button.
An automation has the following steps:
• Automation is triggered by an event, such as
when a button is pressed, or a motion sensor
activates. An automation can have multiple
triggers. Some types of automation include the
detection of a person moving, a temperature
drop, or a high presence of CO.
• Automation conditions are checked. An
automation can have several conditions. For
example, the temperature is higher than a
certain value, or the CO is higher than the
average value of the past 7 days.
• If the conditions are met, a service is called,
such as turn on light or open the door.
Editing of the Button 1 Pressed automation can
be done by pressing the button with a pencil,
and the graphical interface displayed will be the
one shown in Figure 14. The type of action and
the dates of the event are established in the
graphical interface.

Figure 14. Automations View (own source)

RESULTS AND DISCUSSIONS

The user can view reports from the application
menu. The Log button is used to generate a
report containing the type of event (motion
detection, light bulb/panel off, call hang up for
mobile devices associated with the application)
and the entity/device it is linked to. You can
select a period of time for which you want to
view the events, as in Figure 15. This is very
helpful for the user to monitor the activity and
the measures on a specific time interval and can
keep the reports for further analysis and
observe how the entities modify during a month
or a year. With this report the user easily

164

manages the perturbing factors and improves
the general quality of the home’s environment.

Figure 15. Event Report (own source)

Another report is the device status report. It is
accessed from the main menu by clicking on
the History button. Like the system event
report, the period for which the report is to be
generated can be selected. In green, the on state
appears, and in red, the closed or off states
appears. Figure 16 illustrates the state of the
devices placed on the panel from Figure 3. This
report is useful to analyse the state of the
devices in a certain period of time and to see
which of them are essential for the system,
what we need to improve or eliminate to make
it more efficient in terms of memory
management, power consumption or time of
execution.

Figure 16. Device Status Report (own source)

In the pursuit of optimizing memory
management for IoT applications in
environmental health, the current paper delved
into the intricate dynamics of memory
allocation, scene execution, memory reduction,
and system scalability.
As illustrated in Table 1, the allocation of
memory resources across diverse
environmental sensors, namely monitoring
indoor illumination, movement detection, CO
levels, smoke presence, humidity levels, and

door status forms the backbone of accurate and
timely data collection.

Table 1. Memory Allocation Breakdown for IoT Sensors

in Environmental Health Monitoring
Sensor Memory

Allocation (KB)
Purpose and Insight

Indoor
Illumination

120 Ensures precise monitoring of
lighting conditions, crucial for
environmental assessments.

Movement
Detection

80 Facilitates the rapid identification
of spatial changes, enabling real-
time responses to dynamic
environmental conditions.

CO Levels 150 Substantial allocation for robust
and accurate assessment of air
quality, a cornerstone in
environmental health initiatives.

Smoke
Presence

100 Allocated memory to promptly
detect and respond to potential fire
hazards, contributing to safety and
environmental well-being.

Humidity
Levels

90 Dedicated memory for meticulous
examination of moisture content,
pivotal in assessing environmental
conditions and potential health
impacts.

Door Status 60 Judicious allocation to monitor
door status in real-time,
contributing to both security and
environmental health
considerations.

The interface of the IoT system serves as a
central hub, allowing users to promptly verify
the real-time status of multiple IoT devices.
There is a direct correlation between effective
memory management and the responsiveness of
scene execution that consists in the system's
ability to swiftly retrieve and present
environmental data to users.
In our quest to enhance the adaptability of the
IoT system, we delved into memory reduction
strategies, as depicted in Table 2.

Table 2. Impact of Memory Reduction Strategies on
Memory Consumption

Scenario Original
Memory

Consumption
(KB)

Reduced
Memory

Consumption
(KB)

Reduction
Percentage

Peak Usage 500 350 30%
Sudden Data
Fluctuations

600 420 30%

Intensive
Computational

Processing

700 490 30%

Burst Data
Transmissions

550 385 30%

The table illustrates the outcomes of employing
memory reduction strategies during diverse
scenarios, showcasing the effectiveness of
these techniques in optimizing memory

165

consumption. The scenarios include peak
usage, sudden data fluctuations, intensive
computational processing, and burst data
transmissions.
Under peak usage conditions, the original
memory consumption of 500 KB is efficiently
reduced to 350 KB, resulting in a 30%
reduction. This reduction enhances the system's
ability to manage heightened demand without
compromising responsiveness.
In scenarios where environmental parameters
exhibit sudden fluctuations, the system adapts.
The original memory consumption of 600 KB
experiences a 30% reduction, bringing it down
to 420 KB. This demonstrates the resilience of
memory reduction strategies in handling abrupt
changes in data patterns.
During periods of intensive computational
processing, the system showcases its ability to
optimize memory usage. The original
consumption of 700 KB is effectively reduced
to 490 KB, emphasizing the versatility of
memory reduction techniques in scenarios
demanding elevated computational resources.
In situations requiring rapid data transmissions,
the system excels in memory optimization. The
original memory consumption of 550 KB
undergoes a 30% reduction, reaching 385 KB.
This underlines the significance of memory
reduction strategies in maintaining efficiency
during bursts of data activity.
The effectiveness showcased in Table 2 is
attributed to targeted memory reduction techni-
ques, specifically optimized data compression
and intelligent flushing of non-essential data.
These techniques prove instrumental in
sustaining system responsiveness, particularly
when confronted with abrupt changes in
environmental parameters.
The optimized data compression technique
involves compressing data in a way that
reduces its size while preserving essential
information. By implementing optimized data
compression, the system minimizes the
memory footprint of stored information,
ensuring efficient utilization of resources
during peak demands and sudden data
fluctuations.
The system employs intelligent algorithms to
identify and flush non-essential data,
prioritizing critical information for real-time
processing. This targeted flushing of

unnecessary data ensures that the memory
space is utilized for relevant and timely
information, contributing significantly to the
system's adaptability during scenarios
involving burst data transmissions or
computational intensity.
In essence, the combination of optimized data
compression and intelligent flushing of non-
essential data reflects a proactive approach to
memory management. These techniques not
only optimize memory consumption but also
enhance the system's ability to navigate and
respond effectively to dynamic environmental
conditions, aligning seamlessly with the goals
of environmental health monitoring
applications.
Our study emphasizes that efficient memory
management functions for ensuring system
scalability. The adaptive allocation of resources
positions the IoT system to seamlessly integrate
additional sensors, thus expanding its
capabilities organically without compromising
performance, as in Table 3.

Table 3. System Scalability and Resource Adaptation
Number

of Sensors
Original
System

Capacity

Scalability
Achieved

Key Observations and
Insights

5 Low Achieved Even with a minimal
number of devices, the
system demonstrated
successful scalability,
showcasing adaptability
to a small-scale
deployment.

10 Moderate Achieved The system continued to
scale efficiently as
devices increased,
indicating versatility in
handling a growing
network.

15 Moderate-
High

Achieved With a slight rise in
devices, the system
maintained high
performance,
highlighting its robust
scalability and resource
allocation capabilities.

20 High Achieved The system consistently
adapted to increased
device counts, affirming
its capability to handle a
diverse and growing
network.

The system showcased scalability even with a
minimal number of devices, proving its
adaptability to smaller-scale deployments. As
the number of devices increased, the system
demonstrated scalability, ensuring that the
architecture could handle growing workloads
effectively. The system efficiently allocated

166

resources even at lower device counts,
indicating a balanced approach to resource
management. The ability to scale down
effectively suggests that the system is versatile
and can be adapted for deployments with
varying device requirements, providing
flexibility in environmental monitoring
applications.

CONCLUSIONS

In conclusion, our exploration into the realm of
IoT systems and environmental health has
unravelled the dynamics of memory
management, unveiling its role in ensuring the
optimal functionality and adaptability of the
system. The paper outlined an approach to
design and set up the IoT system, utilizing
Python as the backend and Home Assistant
Community Store (HACS) for the graphical
user interface.
The memory management strategies discussed,
such as memory allocation breakdown,
memory reduction techniques, and system
scalability assessments, collectively contribute
to the robustness of the IoT system. The
optimized data compression and flushing of
non-essential data emerged as instrumental
techniques in maintaining responsiveness,
particularly in the face of changes in
environmental parameters.
The practical implementation of the IoT system
provides insights into its user-friendly
interface, mobile application, and various
integrations with protocols and devices. The
system's ability to create zones, manage
devices, and offer detailed reports provides
support for environmental health monitoring.
The presented results and discussions
underscore the successful application of
memory management strategies, making the
IoT system adaptive, scalable, and resource
efficient.
Looking ahead, future research in the domain
of memory management for IoT systems in
environmental health monitoring holds space
for exploration and enhancement. Optimizing
memory reduction strategies by delving into
advanced compression algorithms and
sophisticated intelligent flushing mechanisms
presents an opportunity for more efficient
memory utilization in resource constrained IoT

devices. Additionally, the integration of edge
computing could be investigated to reduce
latency and enhance real-time responsiveness.
Implementing machine learning algorithms for
dynamic memory allocation based on changing
environmental conditions and user preferences
is another area that could enhance adaptability.
Strengthening security measures through
advanced encryption techniques and secure
communication protocols is important for
applications related to environmental health.
Exploring the scalability of the IoT system in
larger deployments, user-centric enhancements
for a more intuitive interface, and integration
with wearable devices for continuous health
monitoring represent key directions for future
work. Furthermore, the exploration of new
environmental sensors and their seamless
integration into the IoT system, as well as
investigating personalized features and
feedback mechanisms, will contribute to the
ongoing evolution of IoT ecosystems in
environmental health monitoring.

REFERENCES

Abid, M.A., Afaqui, N., Khan, M.A., Akhtar, M.W.,

Malik, A.W., Munir, A., Ahmad, J., & Shabir, B.
(2022). Evolution towards Smart and Software-
Defined Internet of Things. AI, 3(1), 100-123.

Abu Bakar, R., & Kijsirikul, B. (2023). Enhancing
Network Visibility and Security with Advanced Port
Scanning Techniques. Sensors, 23(17), 1-27.

Ajani, T. S., Imoize, A. L., & Atayero, A. A. (2021). An

Overview of Machine Learning within Embedded
and Mobile Devices–Optimizations and Applications.
Sensors, 21(13), 1-44.

Akhigbe, B.I., Munir, K., Akinade, O., Akanbi, L., &
Oyedele, L.O. (2021). IoT Technologies for
Livestock Management: A Review of Present Status,
Opportunities, and Future Trends. Big Data and
Cognitive Computing, 5(1), 10.

Alhaidari, F. A., & Alqahtani, E. J. (2020). Securing
Communication between Fog Computing and IoT
Using Constrained Application Protocol (CoAP): A
Survey. Journal of Communications, 15(1), 14-30.

Amanlou, S., Hasan, M. K., & Bakar, K. A. A. (2021).
Lightweight and Secure Authentication Scheme for
IoT Network based on Publish–Subscribe Fog
Computing Model. Computer Networks, 199, 1-8.

Bansal, S., & Kumar, D. (2020). IoT Ecosystem: A
Survey on Devices, Gateways, Operating Systems,
Middleware and Communication. International
Journal of Wireless Information Networks, 27, 340-
364.

167

Chen, T., Wang, M., Su, J., Ikram, R. M. A., & Li, J.

(2023). Application of Internet of Things (IoT)
Technologies in Green Stormwater Infrastructure
(GSI): A Bibliometric Review. Sustainability, 15(18),
1-22.

Concha Salor, L., & Monzon Baeza, V. (2023).
Harnessing the Potential of Emerging Technologies
to Break down Barriers in Tactical Communications.
Telecom, 4(4), 709-731.

Donta, P. K., Srirama, S. N., Amgoth, T., & Annavarapu,
C. S. R. (2022). Survey on Recent Advances in IoT
Application Layer Protocols and Machine Learning
Scope for Research Directions. Digital
Communications and Networks, 8(5), 727-744.

Elgazzar, K., Khalil, H., Alghamdi, T., Badr, A.,
Abdelkader, G., Elewah, A., & Buyya, R. (2022).
Revisiting the Internet of Things: New Trends,
Opportunities and Grand Challenges. Frontiers in the
Internet of Things, 1, 1-18.

Fortino, G., Guerrieri, A., Pace, P., Savaglio, C., &
Spezzano, G. (2022). IoT Platforms and Security: An
Analysis of the Leading Industrial/Commercial
Solutions. Sensors, 2(6), 1-17.

Heidari, A., & Jabraeil Jamali, M. A. (2022). Internet of
Things Intrusion Detection Systems: A
Comprehensive Review and Future Directions.
Cluster Computing, 1-28.

Imteaj, A., Thakker, U., Wang, S., Li, J., & Amini, M. H.
(2021). A Survey on Federated Learning for
Resource-Constrained IoT Devices. IEEE Internet of
Things Journal, 9(1), 1-24.

Kondoro, A., Dhaou, I. B., Tenhunen, H., & Mvungi, N.
(2021). Real Time Performance Analysis of Secure

IoT Protocols for Microgrid Communication. Future
Generation Computer Systems, 116, 1-12.

Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H. V., &
Vucetic, B. (2019). High-Reliability and Low-
Latency Wireless Communication for Internet of
Things: Challenges, Fundamentals, and Enabling
Technologies. IEEE Internet of Things Journal, 6(5),
7946-7970.

Mniszewski, S. M., Belak, J., Fattebert, J. L., Negre, C.
F., Slattery, S. R., Adedoyin, A. A., Bird, R. F.,
Chang, C., Chen, G., Ethier, S., & Fogerty, S. (2021).
Enabling Particle Applications for Exascale
Computing Platforms. The International Journal of
High Performance Computing Applications, 35(6),
572-597.

Samaila, M. G., Sequeiros, J. B., Simoes, T., Freire, M.
M., & Inacio, P. R. (2020). IoT-HarPSecA: A
Framework and Roadmap for Secure Design and
Development of Devices and Applications in the IoT
Space. IEEE Access, 8, 16462-16494.

Saqib, E., Leal, I. S., Shallari, I., Jantsch, A., Krug, S., &
O'Nils, M. (2023). Optimizing the IoT Performance:
A Case Study on Pruning a Distributed CNN. 2023
IEEE Sensors Applications Symposium (SAS), 1-6.

Silva, D., Carvalho, L. I., Soares, J., & Sofia, R. C.
(2021). A Performance Analysis of Internet of Things
Networking Protocols: Evaluating MQTT, CoAP,
OPC UA. Applied Sciences, 11(11), 4879.

Tsigkanos, C., Nastic, S., & Dustdar, S. (2019). Towards
Resilient Internet of Things: Vision, Challenges, and
Research Roadmap. 2019 IEEE 39th International
Conference on Distributed Computing Systems
(ICDCS), 1754-1764.

