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Abstract  
 
The transformative influence of the Internet and the expansive growth of the Internet of Things (IoT) have become 
integral components of contemporary life. This paper delves into the intersection of IoT systems and environmental 
health, emphasizing the challenges posed by memory constraints in low-end IoT devices. As these devices play a role in 
monitoring and managing environmental parameters, the effective utilization of resources through robust memory 
management becomes paramount. With focus on design, configuration, scalability, and performance in scene 
management, this study explores the critical role of memory management in ensuring optimal functionality of IoT 
systems. In the context of environmental health, the paper sheds light on the intricate dynamics of memory allocation, 
scene execution, memory reduction, and system scalability. The study highlights the role of efficient memory 
management in facilitating seamless and adaptive IoT experiences in environmental monitoring applications. In 
conclusion, the paper underscores the need for memory management strategies as the IoT ecosystem continues to 
evolve. This comprehensive exploration contributes to the integral role that effective memory management plays in 
advancing both IoT technologies and environmental health initiatives. 
 
Key words: environmental health, Internet of Things, IoT applications, memory management, operating systems, 
resource optimization. 
 
INTRODUCTION 
 
In an era dominated by interconnected 
technologies, the fusion of the Internet and the 
Internet of Things (IoT) has emerged as a 
driving force shaping our daily lives. From 
smart homes to industrial applications, the 
widespread adoption of IoT systems has 
fundamentally altered our perception and 
interaction with the world. At the core of this 
technological revolution lies a critical juncture, 
the convergence of IoT systems and 
environmental health (Elgazzar et al., 2022). 
The ever-expanding landscape of the Internet 
of Things (IoT) has appeared in a new era of 
interconnected devices, revolutionizing the way 
we interact with our surroundings. At the heart 
of this digital transformation lies the critical 
nexus of memory management, operating 
systems, and environmental health, a 
convergence that is pivotal for the seamless 
operation of IoT applications (Akhigbe et al., 
2021). Memory management becomes 
paramount in low-end IoT devices tasked with 
monitoring and managing environmental 

parameters. Operating systems play an 
important role in orchestrating data exchange, 
while the growing concern for environmental 
health amplifies the significance of robust IoT 
applications (Abid et al., 2022).  
This paper tests a created IoT system, with a 
specific emphasis on the challenges posed by 
memory constraints in low-end IoT devices. As 
the backbone of IoT functionality, memory 
management ensures the smooth operation of 
devices, particularly in the context of 
environmental monitoring and management. 
The study underscores the pivotal role that IoT 
devices play in monitoring and managing 
environmental parameters. From air quality 
sensors to presence detectors, these devices are 
tasked with collecting, processing, and 
transmitting data that forms the foundation of 
environmental health initiatives. However, the 
omnipresent challenge of memory constraints 
in low-end IoT devices necessitates an 
understanding of memory management 
strategies to optimize their performance. 
With a focus on design, configuration, 
scalability, and performance in scene 
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management, this study delves into the role of 
memory management in ensuring the optimal 
functionality of IoT systems. The exploration 
extends to the multifaceted memory allocation, 
scene execution, memory reduction, and system 
scalability, providing insights into the 
management of resources within the proposed 
IoT ecosystem. 
In the context of environmental health, this 
paper sheds light on the relationship between 
efficient memory management and the 
facilitation of seamless and adaptive IoT 
experiences. As environmental monitoring 
applications continue to evolve, the study 
emphasizes the need for tailored memory 
management strategies to navigate the changing 
landscape of IoT technologies. In the next 
section are presented the materials and methods 
used for a complete analysis of the proposed 
IoT system, followed by the outlines of results 
and discussion. The last section describes the 
conclusions and the future work. 
 
MATERIALS AND METHODS 
 
In addition to memory management, the study 
considered the influence of communication 
protocols on the performance of IoT systems. 
Various protocols, such as MQTT, CoAP, and 
HTTP, were evaluated for their impact on data 
transmission efficiency, latency, and 
adaptability to resource-constrained 
environments (Silva et al., 2021). The choice of 
an appropriate communication protocol is 
integral to the seamless operation of IoT 
devices, especially in applications related to 
environmental health where timely and reliable 
data transmission is important. 
The lightweight and efficient publish/subscribe 
mechanism of MQTT proved crucial for 
minimizing the overhead associated with data 
exchange (Amanlou et al., 2021). Memory 
management strategies were intricately 
examined to ensure that MQTT, as a protocol, 
could operate seamlessly in resource-
constrained environments. Emphasis was 
placed on streamlining message processing and 
minimizing memory footprint to enhance the 
protocol's adaptability, particularly in scenarios 
demanding low-latency communication, such 
as real-time environmental parameter 
monitoring (Donta et al., 2022). 

CoAP emerged as a focal point in the 
evaluation of protocols due to its designed 
suitability for constrained devices and low-
power networks (Alhaidari & Alqahtani, 2020). 
Memory management practices were refined to 
align with the specific demands of CoAP, 
emphasizing the need for representations of 
data structures (Mniszewski et al., 2021). The 
objective was to ensure that CoAP could 
operate optimally within environments where 
memory constraints are pronounced, 
maintaining responsiveness without 
compromising on the integrity of transmitted 
data (Bansal & Kumar, 2020). 
As a foundational protocol for web 
communication, HTTP was examined through 
a lens that considered its implications within 
the IoT ecosystem. Memory management 
strategies were tailored to address the 
potentially high memory overhead associated 
with HTTP, ensuring that IoT devices utilizing 
this protocol could operate effectively without 
compromising on responsiveness (Abu Bakar 
& Kijsirikul, 2023). This scrutiny was relevant 
in applications where existing HTTP 
infrastructure was leveraged for IoT 
connectivity (Concha Salor & Monzon Baeza, 
2023; Chen et al., 2023). 
A consideration in the evaluation of these 
protocols was their impact on data transmission 
efficiency. Memory management practices 
were fine-tuned to facilitate streamlined data 
exchange, reducing overhead and optimizing 
the use of available resources (Saqib et al., 
2023; Ajani et al., 2021).  
Latency, a critical factor in real-time IoT 
applications, was examined for these protocols 
(Kondoro et al., 2021). Memory management 
strategies were tailored to mitigate latency 
challenges, ensuring that data transmission 
occurred with minimal delays (Ma et al., 2019). 
Recognizing the diversity of IoT deployments, 
a study placed emphasis on the adaptability of 
these protocols to resource-constrained 
environments (Tsigkanos et al., 2019; Imteaj et 
al., 2021).  
Memory management frameworks were 
designed to adapt to constraints imposed by 
low-end IoT devices (Samaila et al., 2020; 
Heidari & Jabraeli Jamali, 2022), striking a 
balance between protocol efficiency and 
memory optimization.  
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The current paper outlines the approach used to 
design and set up an IoT system. The software 
is built using Python as the backend and Home 
Assistant Community Store (HACS) for the 
graphical user interface (GUI). It acts as a user 
interface, streamlining the creation of 
personalized monitoring and assistance 
solutions. Home Assistant, a powerful and 
open-source home automation platform, serves 
as the orchestrator for the seamless integration 
of IoT protocols such as MQTT, CoAP, and 
HTTP (Fortino et al., 2022). This strategic 
amalgamation enhances the functionality and 
user experience of the IoT system, providing a 
centralized hub for smart home control and 
automation. 
Home Assistant's compatibility with MQTT, a 
lightweight and efficient messaging protocol, 
brings advantages to the IoT ecosystem. MQTT 
seamlessly integrates into Home Assistant, 
enabling real-time communication between 
devices. This integration is instrumental in 
creating a responsive and interconnected IoT 
network, where sensors and actuators 
communicate. The publish/subscribe 
mechanism of MQTT aligns with Home 
Assistant's event-driven architecture, allowing 
for instant updates and actions based on 
changes in the IoT environment. 
The integration of Constrained Application 
Protocol (CoAP) further extends the versatility 
of Home Assistant. CoAP, designed for 
constrained devices and low-power networks, 
aligns with Home Assistant's commitment to 
resource-efficient operation. This integration 
facilitates efficient communication between 
devices with reduced overhead, making it ideal 
for scenarios where memory constraints and 
energy efficiency are paramount. CoAP's 
ability to handle constrained environments 
finds a natural home within the Home Assistant 
ecosystem, enhancing the adaptability of the 
IoT system. 
Home Assistant's integration with HTTP adds a 
layer of accessibility and compatibility to the 
IoT system. While HTTP is a standard protocol 
for web communication, its integration within 
Home Assistant ensures seamless interaction 
with a wide range of web-based services and 
applications. This inclusion allows users to 
leverage existing web infrastructure, providing 
a familiar and accessible means of 

communication. Whether interacting with 
external APIs, cloud services, or web-based 
applications, Home Assistant's HTTP 
integration facilitates a comprehensive and 
interconnected IoT experience. 
For a new location, a name must be added, then 
you must choose the exact position on the 
interactive map or to introduce the values for 
latitude and longitude, as shown in Figure 1. If 
the interactive map is used, the values are 
introduced automatically by the program. 
These zones can be used for automations, so 
that it is known if the monitored person has left 
his home and moved to a new zone that exists 
in the system. 
 

 
Figure 1. Adding a New Location (own source) 

 
After authentication, the user will have access 
to the main interface of the system, such as the 
one presented in Figure 2. With this, the user 
can verify the status of multiple IoT devices, 
such as indoor lightning illumination, along 
with the presence of movement, CO, smoke, 
humidity, and door opening.  
 

 
Figure 2. Main User Interface after Login (own source) 

 
The colour and the intensity of the light sensors 
can be changed by the user from the graphical 
interface, and after this action is performed it 
can be observed that the specific sensor’s logo 
already has the chosen colour. This procedure 
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is shown in Figure 3 and is applied to observe 
the changes in production when the sensors 
intensity is modified.  
  

 
Figure 3. Changes made to the Left Bulb (own source) 

 
The integrations made to operate the tested 
system involved the use of deConz software for 
Zigbee gateways, HACS, Meteorologisk 
Institutt web service to retrieve weather data, 
Mobile App to access the application on the 
mobile phone, Raspberry Pi Power Supply 
Checker to allow checking the power source of 
the Raspberry Pi which sends the data from the 
test board to the IoT system and the Z-Ware 
protocol. 
deConz is a system that communicates with the 
ConBee and RaspBee Zigbee gateways and 
exposes Zigbee devices. HACS simplifies the 
discovery, installation, update, and removal of 
monitoring devices from the IoT system, 
customized for overseeing person activities. 
The Z-Wave protocol is a technology of the 
wireless communication, based on radio 
frequency, specially designed for controlling, 
monitoring, and reading the states of smart 
devices.   
Integrations are managed from the dashboard, 
by choosing the option called Configuration, as 
in Figure 4. From here, the options of each 
entity can be modified to reach the expectations 
of the user. 
 

 
Figure 4. User Configurations for the IoT System  

(own source) 
 

After entering the Devices option, the installed 
devices are shown to the user, like in Figure 5. 
In the displayed table, the installed devices can 
be seen, with their producer, model, assigned 
area, integration, and battery charge value.  
 

 
Figure 5. List of Managed Devices (own source) 

 
In the tab named Entities appear devices that 
are characterized by the associated name for the 
action, the entity identifier, containing the 
name of the automation and the action, as 
presented in Figure 6.  
 

 
Figure 6. System Entities (own source) 

 
Entities are individual parts of a device, such as 
temperature sensor, light bulb, and motion 
sensor. A specific device can have more 
entities. For example, a light bulb that monitors 
the indoor temperature has as device exactly 
the light bulb which contains the circuits and 
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the light, and the entities are a temperature 
sensor and a light bulb.  
Another type of example can be a button 
pressed in case of an alert, where the device is 
the button and the entities are the button’s 
information, how many times it was pressed, 
namely once, to show the data for the last hour, 
twice, for obtaining the summary of data in the 
last 12 hours. 
To organize better the devices, as the project 
grows, zones can be added for a further sorting 
by on them, as presented in Figure 7. In this 
way, the environmental factors can be observed 
considering the specific factors of each area, 
like the temperature, humidity, or CO, and see 
how individuals react to the specific conditions.  
 

 
Figure 7. System Zones (own source) 

 
The interface of the mobile application for the 
IoT system that allows the administration of the 
devices on the panel is shown in Figure 8.  
 

 
Figure 8. Mobile Application for the Management of 

Devices placed on the Panel (own source) 
 
With this mobile application, the user can 
monitor the entire activity within a monitored 
zone, while being everywhere and at any time. 
The mobile interface is very useful, especially 
for elder users who live alone.  

To be located within the home, the user can 
create a map using an editing application, such 
as Magicplan (Figure 9).  
 

 
Figure 9. 2D House Plan Creation using Magicplan (own 

source) 
 
The status of an entity belonging to a device 
can be seen by selecting the Developer Tools 
button from the interface, followed by the 
Status tab. Depending on the entity, the state 
can be a Boolean value (for a button, motion 
sensor) or a numerical one, as in the case of the 
temperature sensor (Figure 10). Depending on 
the entity, various attributes of it appear on the 
GUI. The status of an entity can be changed 
using the Set Status button. 
 

 
Figure 10. Entity Status (own source) 

 
The next tab called Services is dedicated to the 
functionality part of the program to be able to 
manage the platform, in the case of reloading a 
web page, or physically, to turn on the light, as 
shown in Figure 11. A service can be called on 
this page to see if it works. The services are 
called automatically, using a button placed on 
the graphical interface or which can be found 
physically in the user’s house. A service may 
accept parameters such as light intensity or 
colour. 
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Figure 11. Platform Services (own source) 

 
The tab called Templates is used for adding 
personalized panels into the graphical interface 
of the user, like in Figure 12. For example, the 
user can add a panel in which CO, humidity, 
person movement, and average temperature are 
shown. The web template engine used for 
implementing them is Jinja2. 
 

 
Figure 12. Platform Templates (own source) 

 
Events can be automatically called from the 
platform to test their behaviour by pressing the 
Trigger Event button, as shown in Figure 13. 
You can press a button and then observe what 
happens with all the analysed factors and this 
brings some improvements to the entire smart 
system for managing the environmental health. 
 

 
Figure 13. Event Triggers (own source) 

 
An automation can be activated manually from 
the Automations menu by pressing the Trigger 
button. Triggering an automation in this way 
does not consider the conditions or the reason 
for the trigger. This action is only performed to 

verify that the automation result is what a user 
wanted, and then to test the conditions and 
triggers without pressing the Trigger button. 
An automation has the following steps: 
• Automation is triggered by an event, such as 
when a button is pressed, or a motion sensor 
activates. An automation can have multiple 
triggers. Some types of automation include the 
detection of a person moving, a temperature 
drop, or a high presence of CO. 
• Automation conditions are checked. An 
automation can have several conditions. For 
example, the temperature is higher than a 
certain value, or the CO is higher than the 
average value of the past 7 days.  
• If the conditions are met, a service is called, 
such as turn on light or open the door. 
Editing of the Button 1 Pressed automation can 
be done by pressing the button with a pencil, 
and the graphical interface displayed will be the 
one shown in Figure 14. The type of action and 
the dates of the event are established in the 
graphical interface. 
 

 
Figure 14. Automations View (own source) 

 
RESULTS AND DISCUSSIONS 
 
The user can view reports from the application 
menu. The Log button is used to generate a 
report containing the type of event (motion 
detection, light bulb/panel off, call hang up for 
mobile devices associated with the application) 
and the entity/device it is linked to. You can 
select a period of time for which you want to 
view the events, as in Figure 15. This is very 
helpful for the user to monitor the activity and 
the measures on a specific time interval and can 
keep the reports for further analysis and 
observe how the entities modify during a month 
or a year. With this report the user easily 
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manages the perturbing factors and improves 
the general quality of the home’s environment. 
 

 
Figure 15. Event Report (own source) 

 
Another report is the device status report. It is 
accessed from the main menu by clicking on 
the History button. Like the system event 
report, the period for which the report is to be 
generated can be selected. In green, the on state 
appears, and in red, the closed or off states 
appears. Figure 16 illustrates the state of the 
devices placed on the panel from Figure 3. This 
report is useful to analyse the state of the 
devices in a certain period of time and to see 
which of them are essential for the system, 
what we need to improve or eliminate to make 
it more efficient in terms of memory 
management, power consumption or time of 
execution.  
 

 
Figure 16. Device Status Report (own source) 

 
In the pursuit of optimizing memory 
management for IoT applications in 
environmental health, the current paper delved 
into the intricate dynamics of memory 
allocation, scene execution, memory reduction, 
and system scalability.  
As illustrated in Table 1, the allocation of 
memory resources across diverse 
environmental sensors, namely monitoring 
indoor illumination, movement detection, CO 
levels, smoke presence, humidity levels, and 

door status forms the backbone of accurate and 
timely data collection.  
 
Table 1. Memory Allocation Breakdown for IoT Sensors 

in Environmental Health Monitoring 
Sensor Memory 

Allocation (KB) 
Purpose and Insight 

Indoor 
Illumination 

120 Ensures precise monitoring of 
lighting conditions, crucial for 
environmental assessments. 

Movement 
Detection 

80 Facilitates the rapid identification 
of spatial changes, enabling real-
time responses to dynamic 
environmental conditions. 

CO Levels 150 Substantial allocation for robust 
and accurate assessment of air 
quality, a cornerstone in 
environmental health initiatives. 

Smoke 
Presence 

100 Allocated memory to promptly 
detect and respond to potential fire 
hazards, contributing to safety and 
environmental well-being. 

Humidity 
Levels 

90 Dedicated memory for meticulous 
examination of moisture content, 
pivotal in assessing environmental 
conditions and potential health 
impacts. 

Door Status 60 Judicious allocation to monitor 
door status in real-time, 
contributing to both security and 
environmental health 
considerations. 

 
The interface of the IoT system serves as a 
central hub, allowing users to promptly verify 
the real-time status of multiple IoT devices. 
There is a direct correlation between effective 
memory management and the responsiveness of 
scene execution that consists in the system's 
ability to swiftly retrieve and present 
environmental data to users. 
In our quest to enhance the adaptability of the 
IoT system, we delved into memory reduction 
strategies, as depicted in Table 2.  
 

Table 2. Impact of Memory Reduction Strategies on 
Memory Consumption 

Scenario Original 
Memory 

Consumption 
(KB) 

Reduced 
Memory 

Consumption 
(KB) 

Reduction 
Percentage 

Peak Usage 500 350 30% 
Sudden Data 
Fluctuations 

600 420 30% 

Intensive 
Computational 

Processing 

700 490 30% 

Burst Data 
Transmissions 

550 385 30% 

 
The table illustrates the outcomes of employing 
memory reduction strategies during diverse 
scenarios, showcasing the effectiveness of 
these techniques in optimizing memory 



165

 
consumption. The scenarios include peak 
usage, sudden data fluctuations, intensive 
computational processing, and burst data 
transmissions. 
Under peak usage conditions, the original 
memory consumption of 500 KB is efficiently 
reduced to 350 KB, resulting in a 30% 
reduction. This reduction enhances the system's 
ability to manage heightened demand without 
compromising responsiveness. 
In scenarios where environmental parameters 
exhibit sudden fluctuations, the system adapts. 
The original memory consumption of 600 KB 
experiences a 30% reduction, bringing it down 
to 420 KB. This demonstrates the resilience of 
memory reduction strategies in handling abrupt 
changes in data patterns. 
During periods of intensive computational 
processing, the system showcases its ability to 
optimize memory usage. The original 
consumption of 700 KB is effectively reduced 
to 490 KB, emphasizing the versatility of 
memory reduction techniques in scenarios 
demanding elevated computational resources. 
In situations requiring rapid data transmissions, 
the system excels in memory optimization. The 
original memory consumption of 550 KB 
undergoes a 30% reduction, reaching 385 KB. 
This underlines the significance of memory 
reduction strategies in maintaining efficiency 
during bursts of data activity. 
The effectiveness showcased in Table 2 is 
attributed to targeted memory reduction techni-
ques, specifically optimized data compression 
and intelligent flushing of non-essential data. 
These techniques prove instrumental in 
sustaining system responsiveness, particularly 
when confronted with abrupt changes in 
environmental parameters. 
The optimized data compression technique 
involves compressing data in a way that 
reduces its size while preserving essential 
information. By implementing optimized data 
compression, the system minimizes the 
memory footprint of stored information, 
ensuring efficient utilization of resources 
during peak demands and sudden data 
fluctuations. 
The system employs intelligent algorithms to 
identify and flush non-essential data, 
prioritizing critical information for real-time 
processing. This targeted flushing of 

unnecessary data ensures that the memory 
space is utilized for relevant and timely 
information, contributing significantly to the 
system's adaptability during scenarios 
involving burst data transmissions or 
computational intensity. 
In essence, the combination of optimized data 
compression and intelligent flushing of non-
essential data reflects a proactive approach to 
memory management. These techniques not 
only optimize memory consumption but also 
enhance the system's ability to navigate and 
respond effectively to dynamic environmental 
conditions, aligning seamlessly with the goals 
of environmental health monitoring 
applications. 
Our study emphasizes that efficient memory 
management functions for ensuring system 
scalability. The adaptive allocation of resources 
positions the IoT system to seamlessly integrate 
additional sensors, thus expanding its 
capabilities organically without compromising 
performance, as in Table 3. 

Table 3. System Scalability and Resource Adaptation 
Number 

of Sensors 
Original 
System 

Capacity 

Scalability 
Achieved 

Key Observations and 
Insights 

5 Low Achieved Even with a minimal 
number of devices, the 
system demonstrated 
successful scalability, 
showcasing adaptability 
to a small-scale 
deployment. 

10 Moderate Achieved The system continued to 
scale efficiently as 
devices increased, 
indicating versatility in 
handling a growing 
network. 

15 Moderate-
High 

Achieved With a slight rise in 
devices, the system 
maintained high 
performance, 
highlighting its robust 
scalability and resource 
allocation capabilities. 

20 High Achieved The system consistently 
adapted to increased 
device counts, affirming 
its capability to handle a 
diverse and growing 
network. 

 
The system showcased scalability even with a 
minimal number of devices, proving its 
adaptability to smaller-scale deployments. As 
the number of devices increased, the system 
demonstrated scalability, ensuring that the 
architecture could handle growing workloads 
effectively. The system efficiently allocated 
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resources even at lower device counts, 
indicating a balanced approach to resource 
management. The ability to scale down 
effectively suggests that the system is versatile 
and can be adapted for deployments with 
varying device requirements, providing 
flexibility in environmental monitoring 
applications. 
 
CONCLUSIONS 
 
In conclusion, our exploration into the realm of 
IoT systems and environmental health has 
unravelled the dynamics of memory 
management, unveiling its role in ensuring the 
optimal functionality and adaptability of the 
system. The paper outlined an approach to 
design and set up the IoT system, utilizing 
Python as the backend and Home Assistant 
Community Store (HACS) for the graphical 
user interface.  
The memory management strategies discussed, 
such as memory allocation breakdown, 
memory reduction techniques, and system 
scalability assessments, collectively contribute 
to the robustness of the IoT system. The 
optimized data compression and flushing of 
non-essential data emerged as instrumental 
techniques in maintaining responsiveness, 
particularly in the face of changes in 
environmental parameters. 
The practical implementation of the IoT system 
provides insights into its user-friendly 
interface, mobile application, and various 
integrations with protocols and devices. The 
system's ability to create zones, manage 
devices, and offer detailed reports provides 
support for environmental health monitoring. 
The presented results and discussions 
underscore the successful application of 
memory management strategies, making the 
IoT system adaptive, scalable, and resource 
efficient. 
Looking ahead, future research in the domain 
of memory management for IoT systems in 
environmental health monitoring holds space 
for exploration and enhancement. Optimizing 
memory reduction strategies by delving into 
advanced compression algorithms and 
sophisticated intelligent flushing mechanisms 
presents an opportunity for more efficient 
memory utilization in resource constrained IoT 

devices. Additionally, the integration of edge 
computing could be investigated to reduce 
latency and enhance real-time responsiveness. 
Implementing machine learning algorithms for 
dynamic memory allocation based on changing 
environmental conditions and user preferences 
is another area that could enhance adaptability. 
Strengthening security measures through 
advanced encryption techniques and secure 
communication protocols is important for 
applications related to environmental health. 
Exploring the scalability of the IoT system in 
larger deployments, user-centric enhancements 
for a more intuitive interface, and integration 
with wearable devices for continuous health 
monitoring represent key directions for future 
work. Furthermore, the exploration of new 
environmental sensors and their seamless 
integration into the IoT system, as well as 
investigating personalized features and 
feedback mechanisms, will contribute to the 
ongoing evolution of IoT ecosystems in 
environmental health monitoring. 
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