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Abstract

Climate change poses significant threats to aquatic ecosystems, notably impacting fish health. Rising global temperatures
have led to higher water temperatures in freshwater ecosystems, intensifying stress and disease vulnerability in fish
populations. This review investigates the role of bacterial pathogens, specifically Aeromonas hydrophila, Edwardsiella
tarda, and Flavobacterium columnare, which thrive in warmer aquatic environments. These pathogens exhibit increased
virulence under thermal stress, leading to disease outbreaks in fish. The study examines the relationship between climate
change, pathogen proliferation, and fish health, emphasizing the critical need for management strategies to mitigate the
effects of infectious diseases in aquaculture and natural ecosystems.
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INTRODUCTION

Climate change is an undeniable fact and one of
the greatest challenges facing the planet in the
21% century, having a profound impact on all
ecosystems, with extreme weather events and
increasingly frequent precipitation, more intense
heatwaves, and droughts (Stefan & Sinokrot,
1993; IPCC, 2014; Islam et al., 2022). The
climate crisis has increased the global average
temperature. According to NASA's GISTEMP
Team (2024), the last decade of the 20" century
and the beginning of the 21% century represent
the warmest period in the last 2000 years.

In this context, aquatic ecosystems are
extremely  vulnerable  to temperature
fluctuations, and climate change is advancing so
rapidly that biodiversity is struggling to adapt,
with fish not being an exception. These stress
factors affect not only natural waters but also
aquaculture farms that depend on water sources
from natural environments. Pathogens present in
these waters can be transported to aquaculture
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sites, threatening fish health and increasing the
risk of disease outbreaks in farms. Thus, climate
change intensifies the dangers for both natural
ecosystems and aquaculture.

Water temperature is an essential parameter in
determining the health of these ecosystems
(Cairns et al., 1975; Dallas, 2009; Zhou et al.,
2014), as each fish species has a specific
temperature range it can tolerate (Munteanu &
Bogatu, 2008), which influences their growth,
reproduction, performance, and survival
(D’Abramo & Slater, 2019; Islam et al., 2022).
The increase in global temperatures has led to
significant changes in aquatic environments,
including rising water temperatures in rivers and
lakes  (Ambrosetti &  Barbanti, 1999;
Livingstone, 2003), increasing pollutants
concentrations. These changes affect not only
water quality (Kernan et al., 2011) but also the
health of fish and other aquatic organisms
(Aadland, 1993), triggering a range of
physiological —and  biological responses.
Temperature variations can cause corticosteroid



responses (Barton & Peter, 1982; Houghton &
Matthews, 1990; Alfonso et al., 2021, 2023),
metabolic changes (Munteanu & Bogatu, 2008;
Jutfelt, 2020; Volkoff & Rennestad, 2020),
immune responses (Ahmad et al., 2020; Alfonso
et al., 2021; Islam et al., 2022), the production
of heat shock proteins (Lindquist & Craig, 1988;
Arias etal., 2011; Folguera et al., 2011; Dawood
et al., 2020; Somero, 2020), and antioxidants
(Vinagre et al., 2012; Madeira et al., 2013), as
well as fluctuations in haemolymph parameters
(Kazmi et al., 2022; Li et al, 2022).
Additionally, it contributes to the proliferation
of pathogens and the emergence of diseases in
fish (Sheikh et al., 2022).

In poikilothermic animals, temperature also
modulates the gut microbiota (Wang et al,
2022; Hai et al., 2023; Zhang et al., 2023; Zhao
etal., 2023; Kim et al., 2024). As this microflora
can be considered as a separate micro-ecosystem
that co-regulates important host physiological
pathways, the thermal effects on the gut
microbiota and the consequences for host
susceptibility to pathogens must also be
considered. However, the evidence currently
available is insufficient to draw general
conclusions.

This paper examines the bacteria Aeromonas
hydrophila (Chester, 1901), Edwardsiella tarda
(Ewing et al., 1965), and Flavobacterium
columnare (Bernardet and Grimont, 1989),
which significantly impact the health of
freshwater fish. These pathogens are commonly
found in aquatic ecosystems, and their
prevalence has notably increased due to climate
change. Each bacterium has distinct virulence
factors and pathogenic mechanisms that enable
adaptation to stressful conditions like high
temperatures and poor water quality.

Extensive research on these bacteria offers
valuable insights into the long-term effects of
climate change on fish health, emphasizing the
need for effective management of these
infections in the future. The paper will explore
how extreme climatic conditions may drive the
emergence and spread of these diseases.

MATERIALS AND METHODS

The paper is a review based on the analysis of
published studies in scientific journals, research
reports, and other academic resources
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investigating fish diseases in freshwater
ecosystems and the influence of climate change
on these diseases. This approach allows for a
comprehensive  assessment  of  existing
knowledge and provides a basis for identifying
research gaps that require further attention.

Using keywords such as “climate change”,

“freshwater  fish”, “bacterial infections”,
“pathogens”, “Aeromonas hydrophila”,
“Edwardsiella tarda”, “Flavobacterium
columnare”, “Flexibacterium”, “temperature

effects”, “fish health”, “infectious diseases”,
“disease outbreaks” and combinations of these

terms, relevant studies were identified,
including articles published in reputable
scientific ~ journals  accessible  through

international databases such as PubMed, Google
Scholar, Web of Science, ResearchGate,
Springer etc. Additionally, governmental reports
and conference papers were included to enrich
the analysis of the existing literature.

The studies were selected based on their
relevance to the subject of climate change and
its impact on fish diseases in freshwater

ecosystems in relation to rising water
temperatures, fluctuations in  chemical
parameters. Emphasis was placed on recent
studies to ensure the data's timeliness,

considering the rapid pace of climate change.
Works addressing marine ecosystems and
oceans were excluded, as the focus is on fish in
freshwater ecosystems, where the impact of
climate change may differ. Additionally, studies
that do not directly refer to climate change or
diseases caused by pathogens in this context
were excluded, ensuring the relevance and
specificity of the analysis. Furthermore, studies
regarding the effects of low temperatures on fish
health were also excluded.

RESULTS AND DISCUSSIONS

Each fish species has a specific temperature
range in which its performance is optimal and
growth rates are high. Elevated temperatures
favour the development and spread of
pathogens. Mk (2013) highlighted that rising
temperatures in aquatic environments can
disrupt ecological balances, leading to species
invasions and outbreaks of diseases that were
not previously prevalent, with a significant
impact on fish health, increasing their



vulnerability to stress and diseases. The ability
of fish to survive these threats depends on their
resistance and tolerance to pathogens (Soares et
al., 2017; Cascarano et al., 2021), as well as on
the symptoms that manifest in various forms of
interaction with one or more pathogens, from the
moment of host exposure to the resolution of
effects (Casadevall et al., 2000; Stroe et al.,
2022).

Studies have demonstrated that in years with
high temperatures, the prevalence and intensity
of bacterial infections increase (Park et al.,
2012; Shapiro & Cowen, 2012; Chiaramonte et
al.,2016; Awan et al., 2018; Delalay et al., 2019)
as well as parasitic infections (Matvienko et al.,
2020; Sheikh et al., 2022; Stroe et al., 2021,
2022;), which is a relevant aspect for
understanding how climate change can intensify
pressure on fish.

This situation not only threatens the biodiversity
and stability of aquatic ecosystems (Munteanu
& Bogatu, 2008; Islam et al., 2022; Kazmi et al.,
2022), but it can also lead to significant
economic  losses  for  fishermen  and
aquaculturists. Declines in fish populations due
to disease outbreaks can lead to reduced catches,
affecting food security and income for fishers
(Domenici et al., 2019). Additionally, the
increased costs associated with disease
management and the need for sustainable fishing
practices can strain local economies (Samah et
al., 2019). Moreover, these diseases represent a
risk also for the human population; through their
zoonotic characteristics, they can be transmitted
from fish or the infected water to consumers
(Totoiu et al., 2018).

Bacterial infections
Edwardsiella tarda
Edwardsiella tarda is a
bacterium, formerly classified as an
Enterobacterium (Ewing et al.,, 1965) and
currently belonging to the family Hafniaceae.,
an opportunistic pathogen affecting a significant
number of fish species in freshwater
ecosystems, where it can persist in waters rich in
organic matter, causing substantial economic
consequences (Xu & Zhang, 2014). Abayneh et
al. (2012) isolated the pathogen in several fish
species, including Japanese catfish, eels, and
other freshwater and marine species, across
different regions of the globe.

Gram-negative
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Jiang et al. (2019) demonstrated that elevated
water temperatures significantly impact the
metabolism of fish, leading to altered immune
responses and increased susceptibility to
Edwardsiella infections in crucian carp
Carassius carassius (Linnaeus, 1758). This
finding suggests that temperature influences not
only pathogen behaviour but also the fish's
metabolic and immune responses, creating a
feedback loop that can exacerbate infection
rates. Alcaide et al. (2006) identified the bacteria
in European eels in Spain. Similarly, Meyer and
Bullock (1972) reported infections in fish from
Arkansas, US. Even Antarctica wasn't spared
(Leotta et al., 2009), nor were other animals or
humans (Janda & Duman, 2024), indicating that
the disease can operate on a wide geographic
scale (Park et al.,, 2012), especially under
imbalanced environmental conditions such as
poor water quality or significant organic
concentrations (Abayneh et al., 2012),
particularly  those caused by elevated
temperatures (Table 1).

Initially considered a single pathogen, recent
phylogenetic research has led to its
reclassification into multiple species, including
E. piscicida and E. anguillarum, both of which
exhibit specific pathogenicity for freshwater fish
(Katharios et al., 2019). Munteanu & Bogatu
(2008) and Hirai et al. (2015) reported that
mortality rates in cases of Edwardsiellosis can
reach up to 50%, causing significant losses in
fish populations.

E. tarda infects fish through direct contact with
contaminated water or by ingestion of the
bacteria. The infection leads to septicaemia,
affecting vital internal organs such as the liver
and spleen. Among its pathogenic mechanisms
is the ability to invade host cells and form
biofilms, making it resistant to the immune
responses of fish (Griffin et al., 2013). The
bacterium can also produce toxins that induce
necrosis in infected tissues, leading to increased
morbidity and mortality in freshwater fish
populations.

Climate change and rising water temperatures
can amplify the severity of E. farda infections.
At higher temperatures, the bacteria accelerate
their life cycle, promoting more frequent and
intense outbreaks in freshwater habitats (Shao et
al., 2015). Fish in these environments are often
subjected to thermal stress, compromising their



immune response and making them more
vulnerable to infection (Volkoff & Rennestad,
2020). These adverse climatic conditions can
contribute to ecological imbalances, facilitating

the proliferation of pathogens in environments
where  elevated  temperatures  become
predominant.

Table 1. Geographic distribution and freshwater fish hosts of Edwardsiella tarda in natural environments

Host Geographic Research
region
European eel Anguilla anguilla (Linnaeus, 1758) Norway Abayneh et al. (2012)
Korean catfish Silurus asotus (Linnaeus, 1758) South Korea
Japanese eel Anguillus japonica (Temminck & Schlegel, 1846) China
Channel catfish Ictalurus punctatus (Rafinesque, 1818) Arizona, USA
Crucian carp Carassius carassius (Linnaeus, 1758) China Jiang et al. (2019)
European eel Anguilla anguilla (Linnaeus, 1758) Spain Alcaide et al. (2006)

Channel catfish Ictalurus punctatus (Rafinesque, 1818)

Arkansas, USA

Meyer & Bullock (1973)

Largemouth black bass Micropterus salmoides (Lacepéde, 1802)

Florida, USA

White et al. (1973)

Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) Tanzania Van Damme & Vandepitte
Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) Zair (1980)
North African Catfish Clarias gariepinus (Burchell, 1822)
Brook trout Salvelinus fontinalis (Mitchill, 1814) - Uhland et al. (2000)
Channel catfish Ictalurus punctatus (Rafinesque, 1818) Texas, USA Wyatt et al. (1979)
Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) Egypt Moustafa et al. (2016)
Carp Cyprinus carpio (Linnaeus, 1758) India Acharya et al. (2007)
North African Catfish Clarias gariepinus (Burchell, 1822) Egypt Abo El-Yazeed & Ibrahem
Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) (2009)
African catfish Clarias gariepinus (Burchell, 1822) Ethiopia Haile & Getahun (2018)

Freshwater fish infected with E. farda often
show signs of septicemia, such as hemorrhages,
skin lesions, and ulcers. Severe infections can
disrupt osmoregulatory balance, affecting
respiratory and digestive systems. Observable
symptoms include rapid breathing, lethargy, and
reduced overall activity, which can have severe
consequences for the survival of affected
populations (Munteanu & Bogatu, 2008; Park et
al., 2012; Jiang et al., 2019).

Diagnosis of the disease is achieved through
bacterial cultures, serological tests, molecular
methods such as PCR (Abayneh et al., 2012;
Griffin et al., 2013), and genomic sequencing
analyses (Abayneh et al., 2012; Shao et al.,
2015). Furthermore, the isolation and precise
identification of Edwardsiella species are
crucial for appropriate treatment.

Flavobacterium columnare

The columnaris disease 1is a common
myxobacteriosis in freshwater fish, described in
over 40 species (Anderson & Conroy, 1969;
Munteanu & Bogatu, 2008; Noga, 2010), caused
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by the opportunistic pathogen Flavobacterium
columnare (Soriano, 1945), also known as
Flexibacter columnaris or Chondrococcus
columnaris. This Gram-negative bacterium is
one of the most frequent causes of fish mortality
in freshwater habitats, being particularly
dangerous under thermal stress and degraded
environmental conditions, caused by high
temperatures, low dissolved oxygen levels, and
elevated concentrations of organic substances
and nutrients (Khalil et al., 2015; Mitiku, 2018).
Straus et al. (2015) demonstrated that a key
factor in the bacterium's pathogenicity is water
hardness. The bacteria have a wide geographic
distribution, being considered the second most

widespread bacterial pathogen after
Edwardsiella (Hawke & Thune, 1992; Mitiku,
2018).

For instance, Kinnula et al. (2017) found that
nutrient levels in the environment significantly
influenced the virulence of F. columnare in fish,
especially at temperatures between 20- 30°C
(Munteanu & Bogatu, 2008), with an optimum
at 25°C (Declercq et al., 2013). This indicates



that as nutrient levels fluctuate due to climate-
induced changes, the pathogenicity of certain
bacteria may increase, leading to higher
infection rates in  fish  populations.
F. columnare can infect many different species
of wild freshwater fish, including (but not
limited to) carp, channel catfish, goldfish, eel,
perch, salmonids, and tilapia (Decostere et al.,
1998; Figueiredo et al., 2005; Rehulka &
Minaftik, 2007; Soto et al., 2008; Suomalainen et
al., 2009; Morley & Lewis, 2010; Mitiku, 2018).
Transmission occurs horizontally through direct
contact and skin wounds (Zaki et al., 2016;
Mitiku, 2018) and external tissue, producing
necrotic lesions and severe ulcers (Attallah,
2015; Dong et al., 201;) as well as changes in the
haematological and biochemical parameters of
the host (Tripathi et al., 2005; Mitiku, 2018).
Characteristic ~ symptoms include whitish
patches on the body (Declercq et al., 2013;
Mitiku, 2018), soft tissue degradation, and gill
function loss, leading to breathing difficulties
and eventual asphyxiation. A significant aspect
of the pathogen's development is its ability to
form biofilms, which grants it increased
resistance in stressful environments and
facilitates the bacterium's survival outside the
host for extended periods (Cai et al., 2013; Zaki
etal., 2016).

The diagnosis of F. columnare infection is made
through a combination of clinical examination
of affected fish and laboratory tests. External
symptoms are often the first indicator of the
pathogen's presence. However, to confirm the
infection, laboratory methods such as isolating
the bacterium from skin lesions or gills,
followed by morphological and biochemical
identification, are wused (Mitiku, 2018).
Molecular tests like polymerase chain reaction
(PCR) are considered the most precise methods
for identifying the bacteria at the genetic level
(Triyanto & Wakabayashi, 1999; Attallah, 2015;
Dong et al., 2016; Zaki et al., 2016; Mitiku,
2018).

Early diagnosis is crucial to prevent the spread
of the disease in fish populations. PCR tests
allow for the detection of the bacterium even in
early stages of infection, before external
symptoms become apparent. The use of genetic
sequencing techniques has also contributed to
understanding regional variations in
F. columnare strains, which may have important
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implications for fish disease management in the
context of climate change (Sundberg et al.,
2016).

Aeromonas hydrophila

Aeromonas hydrophila (Stanier, 1943) is a
secondary Gram-negative pathogen, known for
causing ulcer disease in freshwater fish species
(Figueras et al., 2007; Ottaviani et al., 2011;
Semwal et al, 2023), including species such as
carp Cyprinus carpio (Linnaeus, 1758) and other
cyprinids, catfish, tilapia and sturgeons
(Matvienko et al., 2020). It is recognized as an
opportunistic pathogen for both homeothermic
and poikilothermic species (Thomas et al., 2009;
Semwal et al., 2023). This opportunistic
bacterium causes haemorrhagic septicaemia and
severe infections, characterized by extensive
skin ulcers (Plumb & Hanson, 2010), tissue
necrosis, and high mortality in affected
populations (Austin & Austin, 2016). The
disease is particularly severe in natural aquatic
environments where  water quality is
compromised (Pianetti et al, 2008; Casabianca
et al., 2015; Jahid et al., 2015; Semwal et al,
2023), and elevated temperatures play an
important role in exacerbating these issues. This
has been observed in freshwater environments
globally (Igbinosa et al., 2012), as bacteria
increase their replication rate and secrete more
toxins.

Moreover, due to its zoonotic nature (Awan et
al., 2018), A. hydrophila can be transmitted
between animals and humans (Janda and
Abbott, 2010; Ottaviani et al, 2011; Semwal et
al., 2023), affecting not only fish but also other
species (Igbinosa et al., 2012; Austin & Austin,
2016; Xu et al., 2023). Higher temperatures
favor the proliferation of A. hydrophila,
accelerate its life cycle, and increase its
virulence, leading to more frequent and severe
outbreaks (Austin & Austin, 2016; Awan et al.,
2018). Rasmussen-Ivy et al.  (2016)
demonstrated that 4. hydrophila becomes much
more virulent under elevated temperatures,
around 40°C, while Semwal et al. (2023) report
the bacterium's ability to survive even at 45°C,
with an optimal growth range between 22-32°C.
Fish exposed to Aeromonas in these conditions
are more prone to septicaemia and mortality
(Beaz-Hidalgo & Figueras, 2013).



Environmental changes can increase the genetic
adaptability of these pathogens, leading to the
emergence of new strains (Shimizu, 2014; Awan
et al, 2018). These strains may have different
virulence and may respond differently to the
antibiotics used in disease management.
Matvienko et al. (2020) observed a high
incidence of bacterial infections in freshwater
species during hot summers, with 25%,
predominantly of the bacterium Aeromonas at
28%, alongside other bacteria such as
Flavobacterium and Edwardsiella.

A. hydrophila is considered an efficient
biomarker of a polluted or stressed aquatic
environment (Leung et al., 1995; Semwal et al,
2023). Clinical symptoms of the disease are
observed in water temperatures above 22°C,
which is why bacterial hemorrhagic septicemia
(BHS) is considered a summer disease
(Munteanu & Bogatu, 2008). The pathogenicity
of this bacterium lies in its ability to form
biofilms, which allow it to invade host tissues
(Samal et al, 2014; Jahid et al., 2015; Semwal et
al.,, 2023; Xu et al.,, 2023) and increase its
antibiotic resistance (Krovacek et al., 1989;
Vivekanandhan et al., 2002; Sreedharan et al.,
2012; Sudheesh et al., 2012; Semwal et al.,
2023). Significant changes occur at the level of
biochemical  parameters and  catalytic
concentrations in infected fish (Rehulka, 2002).
The diagnosis of A. hydrophila infection is
carried out through standard laboratory
methods, such as isolating the bacterium on
selective culture media and identification
through PCR (Igbinosa et al., 2012; Sreedharan
et al., 2012; Semwal et al., 2023). PCR is used
for the rapid and accurate detection of the
bacterium in affected tissues (Austin & Austin,
2016), being one of the primary diagnostic
methods for monitoring ulcer disease. In
addition, genetic sequencing is occasionally
applied in research studies to analyse the genetic
diversity of A. hydrophila strains and to monitor
the evolution of the pathogen in varied
environmental conditions (Sreedharan et al.,

2012).
Thus, climate change, with a focus on warming
freshwater ecosystems and extreme

environmental fluctuations, directly impacts the
severity and frequency of A. hydrophila
infections. This phenomenon requires constant
monitoring and the implementation of more
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rigorous preventive and diagnostic measures to
protect aquatic ecosystems and fish populations.

CONCLUSIONS

Climate change, particularly increasing global
temperatures, has exacerbated disease outbreaks
in freshwater ecosystems, severely affecting fish
health. Elevated water temperatures favour the
proliferation of bacterial pathogens, including
Aeromonas hydrophila, Edwardsiella tarda,
and Flavobacterium columnare, which have
adapted to survive and thrive under thermal
stress.

The thermal tolerance of these pathogens allows
them to exploit stressed fish populations,
leading to higher mortality rates.

Disease outbreaks not only threaten biodiversity
but also have severe economic repercussions for
aquaculture industries. Increased susceptibility
of fish to pathogens wunder changing
environmental conditions can lead to reduced
fish stocks, decreased yields, and higher
management costs for disease prevention.
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